메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
Ngome Mwero (Nagasaki University) Song Fu (University of Strathclyde) Takafumi Inamitsu (Nagasaki University) Stephanie Ordonez-Sanchez (University of Strathclyde,) Benson Mwangi (Jomo Kenyatta University of Agriculture and Technology) Patxi Garcia-Novo (Nagasaki University) Cameron Johnstone (University of Strathclyde) Daisaku Sakaguchi (Nagasaki University)
저널정보
한국해양공학회 한국해양공학회지 한국해양공학회지 제39권 제1호(통권 제182호)
발행연도
2025.2
수록면
82 - 91 (10page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Tidal energy has emerged as a promising renewable energy source, with abundant marine resources available in many parts of the world. To exploit this resource efficiently, reliable and computationally efficient methods are required to analyze energy yields from tidal arrays in real sites worldwide. This paper investigates the impact of irregular-bathymetry seabed elements near a tidal turbine location on the turbine’s performance and wake. A high-resolution three-dimensional bathymetry model was created, and full-scale unsteady simulations were performed using the ANSYS-Fluent computational fluid dynamics tool and the Shear Stress Turbulence (SST) model for two cases: one with the site bathymetry and one with a flat seabed. Compared to the flatbed case, the results show a 1.84% increase in the average turbine power output for the site-bathymetry case. A 4.1% increase in average wake recovery rate was observed near the hill-like seabed features from 3D to 7D downstream from the turbine, followed by 11% reduction in wake recovery rate over the bathymetry slope from 9D downstream from the turbine. The findings of this study highlight the implications of bathymetry-generated effects in optimal site selection and tidal energy farm design.

목차

ABSTRACT
1. Introduction
2. Methods
3. Results
4. Conclusions
References

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-151-25-02-092465587