메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
박준영 (경희대학교) 박준형 (경희대학교) 허원진 (경희대학교) 양성병 (경희대학교)
저널정보
한국인터넷전자상거래학회 인터넷전자상거래연구 인터넷전자상거래연구 제25권 제1호
발행연도
2025.2
수록면
163 - 180 (18page)
DOI
10.37272/JIECR.2025.2.25.1.163

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
With the growing importance of sustainable development, ESG (Environmental, Social, and Governance) management has become a critical component of corporate strategy. Despite this, the domestic ESG evaluation system encounters significant challenges due to inconsistencies in evaluation criteria and the heterogeneous use of data among ESG rating agencies, which compromise the credibility of the evaluations. This study addresses these issues by proposing a methodology that utilizes Large Language Models (LLMs) and prompt engineering to automatically extract ESG evaluation factor data from corporate sustainability reports. The extraction process is based on the criteria established by the Ministry of Trade, Industry, and Energy (K-ESG Guidelines). The research involves collecting sustainability reports from companies across various industries and developing a systematic procedure to extract ESG factors classified into three domains: Environment (E), Social (S), and Governance (G). To ensure consistency and accuracy, synonym dictionaries and prompt engineering techniques are employed. The extracted data are organized in a structured database, and their accuracy and reliability are validated through comparisons with actual evaluation factors provided by ESG rating agencies. This study introduces an automated data extraction and management system that improves the standardization and efficiency of ESG evaluations, thereby contributing to the credibility and reliability of sustainability assessments.

목차

Abstract
Ⅰ. 서론
Ⅱ. 이론적 배경
Ⅲ. 연구방법
Ⅳ. 연구결과 및 토론
참고문헌

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-151-25-02-092295441