메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
Da Hye Lee (Chosun University) In Hong Chang (Chosun University) Kwang Yoon Song (Chosun University)
저널정보
한국데이터정보과학회 한국데이터정보과학회지 한국데이터정보과학회지 제36권 제1호
발행연도
2025.1
수록면
179 - 189 (11page)
DOI
10.7465/jkdi.2025.36.1.179

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
South Korea is experiencing an unprecedented crisis of regional population decline. The fundamental causes of depopulation include a natural decline in birth rates and aging. However, various complex factors such as a lack employment opportunities, insufficient cultural and educational environments, among others, contribute to the crisis. While research on depopulation has focused on forecasting birth rates, the number of women of childbearing age, and marriage rates, as well as developing depopulation indices considering multiple factors, these studies have mainly been conducted on a large scale, focusing on large cities. This study aims to propose a short-term population forecast model using monthly population data at the level of large cities (metropolitan cities, do, and special self-governing provinces) and small cities (si, gun, and gu). The study discusses time series analysis for short-term population forecast, comparing the autoregressive integrated moving average (ARIMA) and the long short-term memory (LSTM). Both ARIMA and LSTM models are fitted with min-max normalization applied to the population data to enhance accuracy. The LSTM structure considers a model with two stacked LSTMs combined with hidden layer. ARIMA fits well on a regional basis, while LSTM shows reasonable performance except for some cities. Although this study is limited to population forecast models, it is suggested that future research could expand to incorporated information on budgets for local governments and regional infrastructure. By combining such data, the study could extend to model research aimed at improving the system for regional affection, ultimately contributing to the enhancement of the current ‘Hometown Love e-um’.

목차

Abstract
1. Introduction
2. Research methods
3. Numerical example
4. Conclusion and discussion
References

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-151-25-02-092361084