메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
김현수 (경희대학교) 구동우 (경희대학교) 이다연 (경희대학교) 최민석 (경희대학교)
저널정보
한국통신학회 한국통신학회논문지 한국통신학회논문지 제50권 제2호
발행연도
2025.2
수록면
234 - 244 (11page)
DOI
10.7840/kics.2025.50.2.234

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
이 논문은 변동하는 자원 환경에서 적응적으로 정확도와 지연시간을 조절할 수 있는 Faster R-CNN 모델과 출구 선택 알고리즘을 개발한다. 최근 컴퓨터 비전과 자연어 처리 분야의 급격한 발전과 함께 추론 지연시간이 중요한 요소로 작용하는 반면, 기존 연구들에서는 자원이 동적으로 변하는 환경에서 지연시간과 정확도 간의 최적의 트레이드-오프를 보장하는 모델과 알고리즘이 존재하지 않았다. 본 연구에서는 이러한 문제를 해결하기 위해 다중 출구(multi-exit) 신경망 기법과 Lyapunov 최적화를 활용한 Faster R-CNN 모델 및 출구 선택 알고리즘을 제안한다. 제안한 기술은 자원의 변화가 불확실한 상황에서도 시스템의 안정성을 유지하면서 장기적으로 최적의 성능을 보장하며, 자원 상황에 따라 추론을 위한 최적의 출구를 선택할 수 있다. 또한, 시뮬레이션을 통해 제안한 기술이 가용 자원에 따라 정확도와 지연시간 사이의 트레이드-오프를 조절할 수 있음을 검증하였다.

목차

요약
ABSTRACT
Ⅰ. 서론
Ⅱ. 다중 출구 신경망 기반의 Faster R-CNN 설계
Ⅲ. 동적 출구 선택 알고리즘
Ⅳ. 시뮬레이션 결과
Ⅴ. 결론
References

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-151-25-02-092293590