메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
이광형 (한국전자기술연구원) 명현정 (한국전자기술연구원) 디팍 기미레 (한국전자기술연구원) 김동훈 (한국전자기술연구원) 조세운 (한국전자기술연구원) 정성환 (한국전자기술연구원) 김병준 (한국전자기술연구원)
저널정보
한국스마트미디어학회 스마트미디어저널 스마트미디어저널 제13권 제8호
발행연도
2024.8
수록면
39 - 48 (10page)
DOI
https://dx.doi.org/10.30693/SMJ.2024.13.8.39

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
최근 초분광 영상을 활용하여 작물의 생육 분석 및 질병을 조기에 진단하는 다양한 연구들이 등장하였지만, 수많은 스팩트럼 밴드를 사용하거나 최적의 밴드를 탐색하는 것은 어려운 문제로 남아 있다. 본 논문에서는 초분광 영상을 이용한 딥러닝 기반의 최적화된 작물 영역 스펙트럼 밴드를 탐색하는 방법을 제안한다. 제안한 방법은 초분광 영상 내 RGB 영상을 추출하여 Vision Transformer 기반 Segformer을 통해 배경과 전경 영역을 분할한다. 분할된 결과는 그레이스케일 전환한 초분광 영상 각 밴드에 투영 후 전경과 배경 영역의 평균 픽셀 비교를 통해 작물 영역의 최적화된 스펙트럼 밴드를 탐색한다. 제안된 방법을 통해 전경과 배경 분할 성능은 평균 정확도 98.47%와 mIoU 96.48%의 성능을 나타내었다. 또한, mRMR 방법에 비해 제안 방법이 작물 영역 밀접하게 연관된 NIR 영역에 수렴하는 것을 확인하였다.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

최근 본 자료

전체보기

댓글(0)

0