메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
Finna E. Indriany (Universitas Indonesia) Kemal N. Siregar (Universitas Indonesia) Budhi Setianto Purwowiyoto (Universitas Indonesia - Harapan Kita National Cardiovascular Center) Bambang Budi Siswanto (Universitas Indonesia) Indrajani Sutedja (Bina Nusantara University Indonesia) Hendy R. Wijaya (Bina Nusantara University Indonesia)
저널정보
대한의료정보학회 Healthcare Informatics Research Healthcare Informatics Research Vol.30 No.3
발행연도
2024.7
수록면
253 - 265 (13page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
Objectives: In Indonesia, the poor prognosis and high hospital readmission rates of patients with heart failure (HF) have yet to receive focused attention. However, machine learning (ML) approaches can help to mitigate these problems. We aimed to determine which ML models best predicted HF severity and hospital readmissions and could be used in a patient selfmonitoring mobile application. Methods: In a retrospective cohort study, we collected the data of patients admitted with HF to the Siloam Diagram Heart Center in 2020, 2021, and 2022. Data was analyzed using the Orange data mining classification method. ML support algorithms, including artificial neural network (ANN), random forest, gradient boosting, Naïve Bayes, tree-based models, and logistic regression were used to predict HF severity and hospital readmissions. The performance of these models was evaluated using the area under the curve (AUC), accuracy, and F1-scores. Results: Of the 543 patients with HF, 3 (0.56%) were excluded due to death on admission. Hospital readmission occurred in 138 patients (25.6%). Of the six algorithms tested, ANN showed the best performance in predicting both HF severity (AUC = 1.000, accuracy = 0.998, F1-score = 0.998) and readmission for HF (AUC = 0.998, accuracy = 0.975, F1-score = 0.972). Other studies have shown variable results for the best algorithm to predict hospital readmission in patients with HF. Conclusions: The ANN algorithm performed best in predicting HF severity and hospital readmissions and will be integrated into a mobile application for patient self-monitoring to prevent readmissions.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

최근 본 자료

전체보기

댓글(0)

0