메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
김대진 (한국한의학연구원) 김현수 (한국생명공학연구원) 김병관 (식품의약품안전처) 남기창 (동국대학교 의과대학)
저널정보
대한의용생체공학회 의공학회지 의공학회지 제45권 제4호
발행연도
2024.8
수록면
162 - 172 (11page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
To analyse the overall research trends in digital therapeutics, this study conducted a quantitative bibliometric analysis of articles published in the last 10 years from 2014 to 2023. We extracted bibliographic information of studies related to digital therapeutics from the Web of Science (WOS) database and performed publication status, citation analy- sis and keyword analysis using R (version 4.3.1) and VOSviewer (version 1.6.18) software. A total of 1,114 articles were included in the study, and the annual publication growth rate for digital therapeutics was 66.1%, a very rapid increase. "health" is the most used keyword based on Keyword Plus, and “cognitive-behavioral therapy”, “depression”, “health- care”, “mental-health”, “meta-analysis” and “randomized controlled-trial” are the research keywords that have driven the development and impact of digital therapeutic devices over the long term. A total of five clusters were observed in the co-occurrence network analysis, with new research keywords such as “artificial intelligence”, “machine learning” and “regulation” being observed in recent years. In our analysis of research trends in digital therapeutics, keywords related to mental health, such as depression, anxiety, and disorder, were the top keywords by occurrences and total link strength. While many studies have shown the positive effects of digital therapeutics, low engagement and high dropout rates re- main a concern, and much research is being done to evaluate and improve them. Future studies should expand the search terms to ensure the representativeness of the results.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

최근 본 자료

전체보기

댓글(0)

0