메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
유한범 (을지대학교 일반대학원 방사선학과) 황호성 (을지대학교 인공지능 융합 시스템 연구소) 김동현 (을지대학교 인공지능 융합 시스템 연구소) 오희주 (을지대학교 일반대학원 방사선학과) 김호철 (을지대학교 일반대학원 방사선학과)
저널정보
대한의용생체공학회 의공학회지 의공학회지 제45권 제4호
발행연도
2024.8
수록면
139 - 147 (9page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
This study enhances AI algorithms for extracting spinal regions from Whole Spine X-rays, aiming for higher accu- racy while minimizing learning and detection times. Whole Spine X-rays, critical for diagnosing conditions such as scoliosis and kyphosis, necessitate precise differentiation of spinal contours. The conventional manual methodology encounters chal- lenge due to the overlap of anatomical structures, prompting the integration of AI to overcome these limitations and enhance diagnostic precision. In this study, 1204 AP and 500 LAT Whole Spine X-ray images were meticulously labeled, spanning the third cervical to the fifth lumbar vertebrae. We based our efforts on the HR-Net algorithm, which exhibited the highest accura- cy, and proceeded to simplify its network architecture and enhance the block structure for optimization. The optimized HR-Net algorithm demonstrates an improvement, increasing accuracy by 2.98% for the AP dataset and 1.59% for the LAT dataset com- pared to its original formulation. Additionally, the modification resulted in a substantial reduction in learning time by 70.06% for AP images and 68.43% for LAT images, along with a decrease in detection time by 47.18% for AP and 43.07% for LAT images. The time taken per image for detection was also reduced by 47.09% for AP and 43.07% for LAT images. We suggest that the application of the proposed HR-Net in this study can lead to more accurate and efficient extraction of spinal regions in Whole Spine X-ray images. This can become a crucial tool for medical professionals in the diagnosis and treatment of spi- nal-related conditions, and it will serve as a foundation for future research aimed at further improving the accuracy and speed of spinal region segmentation

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

최근 본 자료

전체보기

댓글(0)

0