메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
성보현 (제주대학교) 이원경 (강원특별자치도농업기술원 연구협력과) 전신재 (강원농업기술원) 원재희 (강원도농업기술원) 조영열 (제주대학교)
저널정보
강원대학교 농업생명과학연구원(구 농업과학연구소) 농업생명환경연구 농업생명환경연구 제36권 제3호
발행연도
2024.9
수록면
289 - 296 (8page)
DOI
10.22698/jales.20240023

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
Predicting the impacts of changes in the cultivation environment on crop growth is crucial to enhancing farm management and ensuring income stability. We aimed to predict the growth of three lettuce varieties using the XGBoost artificial intelligence model. The three selected lettuce cultivars were ‘Ezatrix’, ‘Ezabel’ (Enza Zaden Co., Ltd., The Netherlands), and ‘Sunpungpochap’ (Kwonnong Co., Ltd., Korea). Cultivars were grown in a coir-based soil-free system. Environmental variables, including air temperature, soil temperature, relative humidity, and solar radiation, were measured at 1 min intervals using a HOBO data logger. The XGBoost artificial intelligence tool was employed to analyze key hyperparameters including n_estimators (number of boosting trees), learning_rate (learning rate), and max_depth (maximum depth of trees) being optimized. The environmental variables considered were air temperature, soil temperature, relative humidity, and solar radiation. The growth of the three lettuce cultivars was predicted using the XGBoost model and model performance was validated through cross-validation. Outliers in growth measurements were identified and re-predicted using moving averages. Root mean square errors (RMSE) for shoot fresh weight of ‘Ezatrix’, ‘Ezabel’, and ‘Sunpungpochap’ cultivars were 0.913, 0.864, and 0.870, respectively. RMSE values for shoot dry weight were 0.901, 0.872, and 0.867, respectively. This study utilized the XGBoost model to predict the growth of three lettuce cultivars. Its results are expected to aid in developing crop management strategies and improving productivity.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

최근 본 자료

전체보기

댓글(0)

0