메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
로요 (단국대학교 미디어커뮤니케이션학과) 김종무 (단국대학교 미디어커뮤니케이션학부)
저널정보
커뮤니케이션디자인협회 커뮤니케이션디자인학회 커뮤니케이션디자인학연구 커뮤니케이션디자인학연구 제88권
발행연도
2024.7
수록면
123 - 135 (13page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
Patriotic consumption based on ethnocentrism has become a major consumer trend among the Chinese MZ generation in China's live commerce. Ethnocentrism is an important concept that reflects consumers' preference for domestic products and aversion to foreign products. This can manifest in various forms, such as economic nationalism, patriotism, cultural rejection of imported goods, and nationalistic tendencies. Consumers with high ethnocentrism, in particular, tend to prefer products from similar cultural backgrounds. This study analyzed the influence of influencers' intentions to recommend domestic products, perceived product quality, and price sensitivity on repurchase intentions of domestic products in TikTok live commerce, as well as the mediating role of ethnocentrism in these relationships. The analysis results showed that influencers' intentions to recommend domestic products and perceived product quality positively impacted repurchase intentions of domestic products. Ethnocentrism partially mediated the relationships between influencers' intentions to recommend domestic products, perceived product quality, price sensitivity, and repurchase intentions of domestic products. The findings of this study demonstrate that influencers' impact, perceived product quality, and price sensitivity significantly influence consumer purchasing behavior in TikTok live commerce, and that ethnocentrism can strengthen these relationships. The results provide a foundational understanding of the role of ethnocentrism in influencing consumers' repurchase intentions in TikTok live commerce.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

최근 본 자료

전체보기

댓글(0)

0