메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
Leslie J. Camacho Aquino (University of Guam, USA) Aurienne Cruz (University of Guam, USA) Brian Lee (Stanford University, USA) 오현주 (University of Guam, USA) Regina-Mae Dominguez (University of Guam, USA) Jan Rychta´r (Virginia Commonwealth University, USA) Dewey Taylor (Virginia Commonwealth University, USA)
저널정보
경북대학교 자연과학대학 수학과 Kyungpook Mathematical Journal Kyungpook Mathematical Journal Vol.64 No.3
발행연도
2024.9
수록면
371 - 393 (23page)
DOI
10.5666/KMJ.2024.64.3.371

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
Severe Acute Respiratory Syndrome (SARS) is a highly contagious viral disease with high mortality rate. There is no vaccine against SARS, but the spread can be limited by masking or social distancing. In this paper we implement a game-theoretic model of voluntary precautions against SARS. We build on the compartmental ODE model of the 2003 SARS epidemic. We assume that susceptible individuals can mask and/or limit contacts with others in order to decrease their chances of contracting SARS. Since the risk of SARS infection depends on the actions of others, this creates a public goods game. We find the Nash equilibrium, the solution of the game, which is the optimal voluntary level of precautions the individuals should take. We also study the effects of such actions on the spread of SARS and show that the effect significantly depends on the individual cost of the precautions. As soon as the cost rises above a critical threshold, the individuals will have no incentive to use any kind of voluntary precaution.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

최근 본 자료

전체보기

댓글(0)

0