메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
이상엽 (건국대학교) 이규태 (신한대학교) 정소명 (숭실대학교) 손소희 (전북대학교) 이서현 (단국대학교) 김주연 (한성대학교)
저널정보
한국비교정부학회 한국비교정부학보 한국비교정부학보 제28권 제3호
발행연도
2024.9
수록면
265 - 294 (30page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
(Purpose) The purpose of this study is to explore strategies to overcome the crisis of regional depopulation through the social reintegration of socially withdrawn individuals (Hikikomori), focusing on how rehabilitation programs can contribute to economic revival and prevent population decline. (Design/methodology/approach) This research applied a system dynamics model to analyze the impact of Hikikomori rehabilitation on regional economies. Using Vensim software, the study constructed a Causal Loop Diagram (CLD) to simulate the relationship between social reintegration programs, economic growth, and population retention over a 25-year period (2025-2050). Various policy scenarios were modeled to assess the long-term effects of rehabilitation programs on regional sustainability. (Findings) The findings suggest that successful Hikikomori rehabilitation programs significantly contribute to regional economic revitalization by increasing labor participation and reducing population outflow. However, the effectiveness of these programs relies heavily on long-term policy support, as short-term interventions show limited results. A strong positive feedback loop was identified in areas where rehabilitation programs were fully supported. (Research implications or Originality) This study emphasizes the importance of long-term, multi-dimensional policies for Hikikomori rehabilitation, integrating psychological support, job training, and social reintegration. It offers a quantitative model linking individual welfare programs to regional economic outcomes, providing valuable insights for policymakers.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

최근 본 자료

전체보기

댓글(0)

0