메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
전숙례 (에이비씨랩스) 이진흥 ((주)에이비씨랩스) 김성억 (농업회사법인 팜팜㈜) 박정환 (㈜에이비씨랩스)
저널정보
한국센서학회 센서학회지 센서학회지 제33권 제4호
발행연도
2024.7
수록면
230 - 236 (7page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
This study aimed to analyze the environmental factors affecting tomato growth by examining the correlation between weather andgrowth environment sensor data from P Smart Farm located in Gwangseok-myeon, Nonsan-si, Chungcheongnam-do. Key environmentalvariables such as the temperature, humidity, sunlight hours, solar radiation, and daily light integral (DLI) significantly affecttomato growth. The optimal temperature and DLI conditions play crucial roles in enhancing tomato growth and the photosynthetic efficiency. In this study, we developed a model to correct and predict the time-series variations in internal environmental sensor data usingexternal weather sensor data. A linear regression analysis model was employed to estimate the external temperature variations and internalDLI values of P Smart Farm. Then, regression equations were derived based on these data. The analysis verified that the estimatedvariations in external temperature and internal DLI are explained effectively by the regression models. In this research, we analyzed andmonitored smart-farm growth environment data based on weather sensor data. Thereby, we obtained an optimized model for the temperatureand light conditions crucial for tomato growth. Additionally, the study emphasizes the importance of sensor-based data analysisin dynamically adjusting the tomato growth environment according to the variations in weather and growth conditions. The observationsof this study indicate that analytical solutions using public weather data can provide data-driven operational experiences and productivityimprovements for small- and medium-sized facility farms that cannot afford expensive sensors.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

최근 본 자료

전체보기

댓글(0)

0