메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
윤성욱 (농촌진흥청 국립농업과학원) 허준 (한국농어촌공사 농어촌연구원) 유찬 (경상대학교)
저널정보
한국농공학회 한국농공학회논문집 한국농공학회논문집 제66권 제5호
발행연도
2024.9
수록면
41 - 50 (10page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
An increasing pattern of extreme rainfall recently affected the rural infrastructures with catastrophic damage, especially the overtopping of a fill damembankment in the Republic of Korea. The overtopping was caused by the sudden increase in reservoir water level over the dam crest level, and itwas not easy work to predict a priori because of its non-linear behavior. Fuzzy time series (FTS) is a fuzzy-logic inference procedure and is suitedto apply to non-linear prediction methods such as machine learning. This study used the Wangshin reservoir and Goesan-dam cases, which experiencedovertopping in 2023 and 2022, respectively. Wangshin Reservoir was a typical agricultural fill dam and needed to stack more available data, with onlythe daily storage rate (water level) of 7 years, starting on 2 May 2016. Therefore, we used Goesan-dam data to select appropriate variables and comparethe analysis result, which was stacked with about 17 years of records. The analyses adapted LSTM to compare with FTS. As a result, the reservoirwater level was applied to predict the overtopping water level, and it was shown that the FTS method could predict the actual water levels effectivelyaccording to the result of comparison with LSTM. Then, the FTS method was expected to predict reservoir water level a priori to make appropriatecountermeasures on overtopping events as one of the alternatives.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

최근 본 자료

전체보기

댓글(0)

0