메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
이욱재 (포항공과대학교 포항가속기 연구소) 장필립 (울산과학기술원) 정남석 (포항공과대학교 포항가속기연구소) 장종훈 (포항공과대학교 포항가속기연구소) 이지민 (울산과학기술원) 이희석 (포항공과대학교)
저널정보
한국원자력학회 Nuclear Engineering and Technology Nuclear Engineering and Technology Vol.56 No.8
발행연도
2024.8
수록면
3,199 - 3,209 (11page)
DOI
10.1016/j.net.2024.03.021

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
During the decommissioning of nuclear and particle accelerator facilities, a considerable amount of large-scale radioactive waste may be generated. Accurately defining the activation level of the waste is crucial for proper disposal. However, directly measuring the internal radioactivity distribution poses challenges. This study introduced a novel technology employing machine learning to assess the internal radioactivity distribution based on external measurements. Random radioactivity distribution within a structure were established, and the photon spectrum measured by detectors from outside the structure was simulated using the FLUKA Monte-Carlo code. Through training with spectrum data corresponding to various radioactivity distributions, an evaluation model for radioactivity using simulated data was developed by above Monte-Carlo simulation. Convolutional Neural Network and Transformer methods were utilized to establish the evaluation model. The machine learning construction involves 5425 simulation datasets, and 603 datasets, which were used to obtain the evaluated results. Preprocessing was applied to the datasets, but the evaluation model using raw spectrum data showed the best evaluation results. The estimation of the intensity and shape of the radioactivity distribution inside the structure was achieved with a relative error of 10%. Additionally, the evaluation based on the constructed model takes only a few seconds to complete the process

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

최근 본 자료

전체보기

댓글(0)

0