메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
M. Divya (Indira Gandhi Centre for Atomic Research) C. Mahata (Metallurgical and Materials Engineering, IIT) K. G. Pradeep (Metallurgical and Materials Engineering, IIT) C. R. Das (Indira Gandhi Centre for Atomic Research) M. Vasudevan (Indira Gandhi Centre for Atomic Research)
저널정보
대한금속·재료학회 Metals and Materials International Metals and Materials International Vol.30 No.8
발행연도
2024.8
수록면
2,215 - 2,228 (14page)
DOI
10.1007/s12540-024-01632-w

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
Improvement in liquation cracking susceptibility of Alloy 617M, a Ni base superalloy is observed on modification of solutionannealing conditions for the first time in the present investigation. Results suggest that the heat affected zone of the alloy in asreceived condition is more susceptible to liquation cracking than in modified solution annealed condition. A reduction in totalcrack length up to 62% is observed after modification of solution annealing condition. Discontinuous elemental segregation ingrain boundary, reduced precipitation and formation of low-energy serrated boundaries after solution annealing is observed. This decelerate complete wetting of grain boundaries in the heat affected zone during welding/thermal cycling, resulting inimproved resistance to liquation cracking in alloy 617M. Marginal decrease in strength is attributed to increased grain size ofmaterial, whereas increased ductility in solution annealed condition is attributed to, reduced elemental segregation at grainboundaries and increased number fraction of low energy special boundaries. In this study, influence of secondary precipitatesand segregation on liquation cracking in the alloy is brought out and elucidated using scanning electron microscopy andelectron back scattered diffraction techniques.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

최근 본 자료

전체보기

댓글(0)

0