메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
Dhiman Basu (Indian Institute of Technology) Sheikh Mayesser Mushtaq (Indian Institute of Technology) Shivani Sharma (Indian Institute of Technology) Sandesh Tripathi (Indian Institute of Technology)
저널정보
한국콘크리트학회 International Journal of Concrete Structures and Materials International Journal of Concrete Structures and Materials Vol.19 No.1
발행연도
2025.1
수록면
143 - 161 (19page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
The mix design of concrete is an important aspect that affects its strength and durability. This paper aims to revisit the existing mix design method given in IS 10262:2019 through a capacity-based approach. The approach involves identifying the possible failure modes in concrete and eliminating the undesirable ones leading to significant reduction in dispersion. This is accomplished by utilizing coarse aggregates that meet a specific minimum strength requirement or threshold (e.g., ~ 77 MPa for M95 grade of concrete), which is determined through a priori estimating the cohesion and friction angle of the concrete. The methodology to estimate the cohesion and friction angle from a single unconfined compression test is proposed based on the Mohr–Coulomb theory and using the orientation of failure plane of fractured specimen as a supplemental information from the same experiment. This paper also offers a simple and approximate test procedure to estimate the aggregate’s compressive strength (~ 106 MPa in this mix design) reasonably which is essential for the capacity-based mix design. An experimental programme is also carried out to design the concrete mix using the proposed capacity-based approach. The results indicate that M95 concrete is achieved with a low standard deviation and coefficient of variation (~ 3%), falling in class of excellent quality control as per ACI 214R-11. This quality control is crucial in seismic structural design as variations in concrete strength is likely to negate the underlying principle of strong column–weak beam philosophy resulting in the triggering of undesirable shear modes of failure.

목차

Abstract
1. Introduction
2. Parameters c‑phi Using a Single Unconfined Compression Test
3. Capacity‑Based Mix Design for High‑Strength Concrete
4. Proposed Mix Design Procedure
5. Experimental Programme
6. Results and Discussion
7. Mix Design by IS 10262:2019
8. Conclusions
References

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

최근 본 자료

전체보기

댓글(0)

0