메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
Minghao Fei (China Jiliang University) Denghao Wu (China Jiliang University) Qi Li (China Jiliang University) Yuhang Chen (China Jiliang University)
저널정보
한국유체기계학회 International Journal of Fluid Machinery and Systems International Journal of Fluid Machinery and Systems Vol.17 No.4
발행연도
2024.12
수록면
211 - 217 (7page)
DOI
10.5293/IJFMS.2024.17.4.211

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Centrifugal pumps are the core pressure boosting unit of urban water supply systems. With the proposal of the dual carbon strategy, there is an urgent need to reduce the energy consumption of centrifugal pumps in water supply systems. Therefore, we use a control method based on the line of proportional pressure, which effectively reduces the head of centrifugal pumps under low flow conditions and achieves a high energy saving of the system. Moreover, we set up a water supply testing system, and apply two control methods, including the constant pressure method and the proportional pressure control method, to regulate the pump and valve. After that, we compared and analysed the comprehensive energy consumption of the system under different control strategies. The results illustrate that proportional pressure control can save more than 58% energy in theory at flow of 1.3 m³/h, and the system controllable flow range is up of 1.3 m³/h. The proportional pressure control has wider high efficiency working flow range than the constant pressure control, it can achieve a higher pump efficiency at minimum flow of 2.5 m³/h, while the constant pressure control is at minimum flow of 3.4 m³/h.

목차

Abstract
1. Introduction
2. Principle of proportional pressure control
3. Experimental facility
4. PID tunning
5. Results of proportional pressure control and constant pressure control
6. Conclusion
References

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-151-25-02-092148607