메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
이승주 (Korea Institute of Civil Engineering and Building Technology) 정기연 (Hanlim CE) 이태훈 (Hanlim CE) 김영석 (Korea Institute of Civil Engineering and Building Technology)
저널정보
한국지반신소재학회 한국지반신소재학회 논문집 한국지반신소재학회 논문집 제23권 제2호
발행연도
2024.6
수록면
43 - 52 (10page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
최근 이상기후로 인한 급경사지 붕괴 위험이 증가되고 있으며, 급경사지 붕괴 위험의 사전 예측 및 경보 전파가 이루어지지 않아 인명과 재산 피해가 발생할 수 있다. 본 논문에서는 급경사지의 상태를 평가하기 위해 IoT 센서와 AI 기반 카메라를 융합한 급경사지 분석 시스템을 개발하였다. 시스템을 개발하기 위하여 급경사지 지반조건을 고려한 계측센서 하드웨어 및 펌웨어 설계, AI 기반 영상 분석 알고리즘 설계, 그리고 예·경보 솔루션 및 시스템 제작을 수행하였다. IoT 센서의 데이터와 AI 카메라 영상 분석을 통해 센서 데이터의 오차를 최소화하고, 데이터의 신뢰성을 향상시키고자 하였다. 또한 실제 급경사지에 적용하여 정확도(신뢰도)를 평가하였다. 그 결과, 센서 계측 오류는 0.1° 이내로 유지되었으며 계측 데이터의 전송률은 95%이상이었다. AI 기반의 영상 분석 시스템은 야간에도 부분 인식률 99%의 높은 성능을 나타내었다. 본 연구결과는 다양한 사회간접자본(SOC) 시설의 급경사지 상태 분석 및 스마트 유지관리 분야에도 적용할 수 있을 것으로 판단된다.

목차

ABSTRACT
요지
1. 서론
2. IoT 센서와 AI 카메라를 융합한 급경사지 상태 분석 시스템 개발
3. 급경사지 예·경보 솔루션 및 시스템 설계
4. 현장 성능 평가 및 검증
5. 결론
References

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-151-25-02-092133624