메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술대회자료
저자정보
Minsu Cho (Korea Institute of Machinery & Materials (KIMM)) Dong-Il Park (Korea Institute of Machinery & Materials (KIMM))
저널정보
제어로봇시스템학회 제어로봇시스템학회 국제학술대회 논문집 ICCAS 2024
발행연도
2024.10
수록면
1,068 - 1,073 (6page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Nonlinear model predictive control is a reliable and effective approach for optimization-based motion planning. In safety-critical control systems, controllers must solve inequality-constrained optimization problems. However, scene understanding, which consists of perceiving the driving environment and designing safety constraints, may complicate the optimization problem and is a resource-intensive process. In this paper, we propose a unified scene understanding method that uses occupancy grid maps (OGMs) to design a single unified constraint. We also propose a novel method for designing OGMs that method accounts for noise and uncertainties. We use this OGM approach for scene understanding to design a single constraint that ensures that only cells with occupancy probability values less than a predefined threshold can be traversed. We embed this constraint into the optimization problem as a single unified discrete barrier state. In the experiments, we compare the performance of the proposed method with that of an augmented Lagrangian method. The motion planning results in a pop-up obstacle avoidance scenario using an unmanned mobile vehicle demonstrate the advantages of the proposed method, such as reduced time costs and improved safety.

목차

Abstract
1. INTRODUCTION
2. RELATED WORKS
3. COST MAP AS AN OCCUPANCY GRID MAP
4. GRID-BASED INTEGRATED MOTION PLANNING
5. EXPERIMENTAL RESULTS
6. DISCUSSION AND CONCLUSION
REFERENCES

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

최근 본 자료

전체보기

댓글(0)

0