메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
김범수 (경상국립대학교) 권재성 (경상국립대학교) 양정현 (경상국립대학교)
저널정보
한국표면공학회 한국표면공학회지 한국표면공학회지 제57권 제6호
발행연도
2024.12
수록면
486 - 491 (6page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
This study proposes an image segmentation technique utilizing the U-Net model to effectively segment the cross-sections of corroded specimens. The proposed model, leveraging an encoderdecoder architecture with skip connections, enables high-resolution segmentation, which is advantageous for the precise delineation of complex corroded areas. After training the model on a labeled image dataset, performance evaluation using test images demonstrated that the proposed U-Net model achieved high accuracy and IoU scores, thereby confirming its excellent performance. These results indicate that machine learning-based long-term image analysis can contribute to the efficient and straightforward segmentation of specimens.

목차

Abstract
1. 서론
2. 이미지 분할을 위한 합성곱 신경망 U-Net
3. U-Net 모델 구성 및 실험
4. 결론
REFERENCES

참고문헌 (17)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-151-25-02-092193415