메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
Jeonghyun Sung (Eulji University) II-Hoon Cho (Eulji University)
저널정보
대한의생명과학회 대한의생명과학회지 대한의생명과학회지 제30권 제4호
발행연도
2024.12
수록면
284 - 290 (7page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Objectives: Dry eye syndrome is a common condition in modern society that causes symptoms such as dryness, foreign body sensation, fatigue, and pain. Initially, symptoms can be improved with simple treatments; however, when accompanied by inflammation, antibiotic therapy is required, necessitating clear tests to distinguish between inflammatory and non- inflammatory dry eye syndrome. Currently, clinical assessments such as the Schirmer test and tear break-up time are used for diagnosis, but they have limitations in determining the presence of inflammation. Therefore, this study aimed to develop a quantitative diagnostic kit based on fluorescent immunoassay to diagnose the presence and severity of inflammation.
Methods: The developed kit utilizes fluorescent dye as a signaling molecule and employs a sandwich immunoassay method with antibodies fixed on a nitrocellulose membrane to detect Matrix metalloproteinase-9 in tears.
Results: As a result, the quantifiable range was found to be 0-100 ng/mL, with a limit of detection of 0.17 ng/mL and a limit of quantification of 0.5 ng/mL. Additionally, an interference test was conducted to verify whether commonly used artificial tears affect the diagnostic system; the results confirmed that no interference from artificial tears was observed.
Conclusion: This study establishes a quantitative diagnostic system that overcomes the limitations of existing methods, allowing for clear differentiation of the presence and severity of inflammation in tears, which is expected to contribute to more accurate diagnosis, appropriate treatment, and prevention.

목차

ABSTRACT
서론
재료 및 방법
결과
논의
REFERENCES

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-151-25-02-092171973