메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
Jiang, Si-Ting (Kyung Hee University) Kim, Hag-Min (Kyung Hee University)
저널정보
한국비즈니스학회 비즈니스융복합연구 비즈니스융복합연구 제9권 제6호
발행연도
2024.12
수록면
143 - 152 (10page)
DOI
10.31152/JB.2024.12.9.6.143

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Artificial intelligence (AI) has become integral across various research fields, including cross-border e-commerce (CBEC), where it addresses challenges such as information overload caused by the rapid growth of online platforms and product diversity. AI recommender systems play a critical role in shaping consumer trust and purchase intention by providing personalized recommendations tailored to individual preferences. However, research on the impact of AI recommender systems within CBEC platforms remains limited. This study examines how intelligent features and recommendation quality influence consumer trust and purchase intention in CBEC by applying the SOR model and focusing on Chinese consumers using platforms like Amazon and Tmall Global. Empirical analysis and the structural equation model (SEM) reveal significant gender differences: male consumers are more influenced by perceived performance, while female consumers place greater emphasis on perceived diversity in recommendations. These insights underscore the importance of tailored AI recommendation strategies that cater to distinct demographic preferences, ultimately boosting consumer trust and encouraging purchase intentions in CBEC contexts.

목차

Ⅰ. Introduction
Ⅱ. Precedent Studies
Ⅲ. Research Methodology
Ⅳ. Research Results
Ⅴ. Conclusion
Reference

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-151-25-02-092264820