메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
SANGWOO KANG (PUSAN NATIONAL UNIVERSITY) MINYEOB LEE (KOOKMIN UNIVERSITY) WON-KWANG PARK (KOOKMIN UNIVERSITY) SEONG-HO SON (SOONCHUNHYANG UNIVERSITY)
저널정보
한국산업응용수학회 JOURNAL OF THE KOREAN SOCIETY FOR INDUSTRIAL AND APPLIED MATHEMATICS Journal of the Korean Society for Industrial and Applied Mathematics Vol.28 No.3
발행연도
2024.9
수록면
96 - 107 (12page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
We consider the bifocusing method (BFM) for a fast identification of small objects in microwave imaging. In many researches, it was very hard to measure the scattering parameter data if the location of the transmitter and the receiver is the same. Due to this reason, the imaging function of BFM has mainly been designed by converting unknown measurement data into the zero constant; this approach has yielded reliable imaging results, but the theoretical reason for this conversion has not been investigated yet. In this study, we converted unknown measurement data to a fixed constant and applied the BFM to retrieve small objects. To demonstrate the effect of the converted constant, we show that the imaging function of the BFM can be represented in terms of an infinite series of the Bessel functions of an integer order, antenna setting, material properties, and applied constant. Based on the theoretical result, we concluded that converting unknown measurement data to constant zero guarantees good imaging results, including the unique determination of the objects. Simulation results obtained with synthetic and real data support the theoretical result.

목차

ABSTRACT
1. INTRODUCTION
2. SCATTERING MATRIX AND IMAGING FUNCTION FOR THE BIFOCUSING METHOD
3. STRUCTURE OF THE IMAGING FUNCTION AND THE BEST SELECTION OF CONSTANT
4. SIMULATION RESULTS WITH SYNTHETIC AND REAL DATA
5. CONCLUSION
REFERENCES

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-151-25-02-092119062