In this study, we developed and evaluated a simple device for removing ionic impurities that affect the performance of a polymer electrolyte membrane fuel cell (PEMFC) in a marine environment. In such environments, PEMFCs may experience performance degradation due to the presence of Na+ and Cl- in the air. To address this issue, the decontamination device was designed with both heating and cooling components. This device was positioned between a humidifier containing NaCl solution and a humidifier containing deionized water, both connected on the cathode side. The decontamination device effectively removed impurities (Na+ and Cl-) during experiments. As a result, the electrochemical performance of the fuel cell with the decontamination device improved compared to that of the fuel cell without it. Notably, the activation resistance and electrochemical surface area were significantly enhanced, and the ohmic resistance also improved when compared to the fuel cell without the decontamination device.