메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
이상민 (건국대학교) 이상원 (건국대학교) 최서연 (건국대학교) 임현우 (건국대학교)
저널정보
한국태양에너지학회 한국태양에너지학회 논문집 한국태양에너지학회 논문집 제44권 제6호
발행연도
2024.12
수록면
157 - 174 (18page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Thermal comfort varies according to the seating infrastructure, even within the same space; and individuals may perceive thermal comfort differently, albeit using the same seat. The current seat-reservation systems in library reading rooms do not account for these differences, leading to dissatisfaction among users. A survey of 149 library patrons at K University found that 73% were dissatisfied with the thermal conditions in the library. In this study, we developed a Predicted Mean Vote (PMV) virtual sensor system to provide the important thermal-comfort information required for ensuring optimal seat reservation. Using a Multi-Layer Perceptron (MLP) model, we developed PMV virtual sensors for all seats in the library while measuring the temperature and humidity across the room; a total of 45 models were constructed, with the Coefficient of Variation of the Root-Mean-Square error (cv(RMSE)) being less than 10%. The Computational Fluid Dynamics (CFD) simulations provided the airflow data; the data were incorporated into the PMV calculations. Based on this, the PMV was visualized within an actual seat reservation system to identify and recommend optimal seating, reducing user dissatisfaction by up to 41.7%. This study indicates that providing PMV-based thermal comfort information during seat reservation can effectively reduce occupant dissatisfaction, which in turn can help minimize unnecessary heating and cooling demands and contribute to building energy optimization.

목차

Abstract
1. 서론
2. 연구 흐름
3. 방법론
4. 결과
5. 결론 및 추후 연구
REFERENCES

참고문헌 (13)

참고문헌 신청

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-151-25-02-091247352