메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술대회자료
저자정보
Kamese Jordan Junior (Inje University) Kouayep Sonia Carole (Inje University) Hee-Cheol Kim (Inje University)
저널정보
한국정보통신학회 INTERNATIONAL CONFERENCE ON FUTURE INFORMATION & COMMUNICATION ENGINEERING 2024 INTERNATIONAL CONFERENCE ON FUTURE INFORMATION & COMMUNICATION ENGINEERING Vo.15 No.1
발행연도
2024.1
수록면
83 - 87 (5page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Presently, the leading cause of dementia is Alzheimer's Disease (AD), which has no effective treatment in existence, and one of the significant challenges is dearly detection. This is because AD is a progressive neurological condition where no symptoms are evident until cognition is mildly impaired. It is characterized primarily by amyloid plaques that form over time as part of an immune response to exposure to toxicity within the brain. Beyond genetics, external factors contribute to the onset and progression, proving it difficult to carry out diagnosis and prognosis. Artificial Intelligence has helped with studying the disease to an extent, and studies with imaging data have proved more effective than those with clinical data. This research uses an explainable artificial intelligence (XAI) approach wherein deep learning methods are used on imaging datasets to extract key features based on their correlation, which will then be classified through machine learning techniques. The objective is to have a model trained on only relevant deep features with the highest possible accuracy.

목차

Abstract
Ⅰ. INTRODUCTION
Ⅱ. SYSTEM MODEL AND METHODS
Ⅲ. RESULTS
Ⅳ. DISCUSSION AND CONCLUSIONS
REFERENCES

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

최근 본 자료

전체보기

댓글(0)

0