메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술대회자료
저자정보
Gaeun Lee (Seoul Women's University) Seoyun Yi (Seoul Women's University) Jongtae Lee (Seoul Women's University)
저널정보
한국정보통신학회 INTERNATIONAL CONFERENCE ON FUTURE INFORMATION & COMMUNICATION ENGINEERING 2024 INTERNATIONAL CONFERENCE ON FUTURE INFORMATION & COMMUNICATION ENGINEERING Vo.15 No.1
발행연도
2024.1
수록면
43 - 46 (4page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Amid the emergence of various fashion-related companies, small and medium-sized enterprises(SMEs) currently face challenges in developing and utilizing competitive digital content and technology due to the lack of capital and human resources, far from large companies with their own studios and fashion Merchandising Directors(MDs). Therefore, next-generation digital technology is needed to cope with the widening gap, and it is necessary to secure the capacity to develop new products and contents based on artificial intelligence-based automatic image generation technology.
In this study, we conduct the following two-stage study to suggest a deep learning-based automatic fashion recommendations algorithm. In the first step, we utilize 'rembg' and 'OpenCV' Python libraries to automatically remove the background of clothing images and extract objects. Subsequently, in the second step, we propose an automated model that adopts the CNN(Convolutional Neural Network) algorithm, one of the considerable deep learning algorithms, to classify and quantify the emotional moods of the images. Through this digital transformation, this study is expected to contribute to reducing costs, increasing sales, and enhancing the brand image of SMEs.

목차

Abstract
Ⅰ. SYSTEM MODEL AND METHODS
Ⅱ. DISCUSSION AND CONCLUSIONS
REFERENCES

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

최근 본 자료

전체보기

댓글(0)

0