메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술대회자료
저자정보
Md Nayeem Hosen (Inje University) Shah Muhammad Imtiyaj Uddin (Inje University) Tagne Poupi Theodore Armand (Inje University) Joonhyung Im (Inje University) Hee-Cheol Kim (Inje University)
저널정보
한국정보통신학회 INTERNATIONAL CONFERENCE ON FUTURE INFORMATION & COMMUNICATION ENGINEERING 2024 INTERNATIONAL CONFERENCE ON FUTURE INFORMATION & COMMUNICATION ENGINEERING Vo.15 No.1
발행연도
2024.1
수록면
11 - 19 (9page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Malaria remains a significant global health concern, impacting millions of people each year as it is transmitted through the bites of infected female Anopheles mosquitoes, posing a life-threatening risk. Traditional diagnostic methods, based on the manual examination of blood smears to identify infected red blood cells, are time-consuming and prone to human errors, potentially leading to inaccurate diagnoses. This study utilizes the potential of advanced deep learning techniques, specifically the Convolutional Neural Network (CNN), to revolutionize malaria detection. We systematically preprocess the dataset, laying the foundation for model training. Our objective is the discernment of cell infection status distinguishing between infected and uninfected cells with a high degree of accuracy. By implementing a validation methodology involving 27,560 individual single-cell images, the formulated 16-layer Convolutional Neural Network (CNN) model exhibits a commendable average accuracy of 94.23%. Additionally, we comprehensively explore Convolutional Neural Network (CNN) architectures, encompassing custom models that illustrate higher accuracy than most pre-trained models. The objective is to discern the most efficient model that ensures accurate detection of infections. Our study presents a Convolutional Neural Network (CNN)-based model proficiently differentiating between infected and uninfected samples within stained red blood cell (RBC) images.

목차

Abstract
Ⅰ. INTRODUCTION
Ⅱ. Literature Survey
Ⅲ. Model and Methods
Ⅲ. RESULTS
Ⅳ. CONCLUSIONS
REFERENCES

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0