메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
Hyeonjin Park (Andong National University) Younmi Lee (Andong National University) Kotnala Balaraju (Andong National University) Jungyeon Kim (Andong National University) Yongho Jeon (Andong National University)
저널정보
한국식물병리학회 The Plant Pathology Journal The Plant Pathology Journal 제40권 제6호
발행연도
2024.12
수록면
681 - 695 (15page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
The application of synthetic fungicides has resulted in environmental pollution and adverse effects on non-target species. To reduce the use of agrochemicals, crop disease management requires microbial biological control agents. Bacillus-related genera produce secondary metabolites to control fungal pathogens. Bacillus velezensis GYUN-1190, isolated from soil, showed antagonistic activity against Colletotrichum fructicola, the apple anthracnose pathogen. Volatile organic compounds and culture filtrate (CF) from GYUN-1190 inhibited C. fructicola growth in vitro, by 80.9% and 30.25%, respectively. The CF of GYUN-1190 inhibited pathogen spore germination more than cell suspensions at 108 cfu/ml. Furthermore, GYUN-1190 CF is effective in inhibiting C. fructicola mycelial growth in vitro, and it suppresses apple fruit bitter rot more effectively than GYUN-1190 cell suspensions and pyraclostrobin in planta. The mycelial growth of C. fructicola was completely inhibited 48 h after immersion into the CF, in compared with positive controls and GYUN-1190 cell suspensions. The genetic mechanism underlying the biocontrol features of GYUN-1190 was defined using its whole-genome sequence, which was closely compared to similar strains. It consisted of 4,240,653 bp with 45.9% GC content, with 4,142 coding sequences, 87 tRNA, and 28 rRNA genes. The genomic investigation found 14 putative secondary metabolite biosynthetic gene clusters. The investigation suggests that B. velezensis GYUN-1190 might be more effective than chemical fungicides and could address its potential as a biological control agent.

목차

Materials and Methods
Results
Discussion
References

참고문헌 (0)

참고문헌 신청

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-151-25-02-091255961