메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
SanMiguel Patricia (ISEM Fashion Business School, University of Navarra, Madrid, Spain) Sádaba Teresa (ISEM Fashion Business School, University of Navarra, Madrid, Spain) Sayeed Narmin (Faculty of Communication, Culture and Society, USI Università della Svizzera Italiana, Lugano, Switzerland)
저널정보
한국마케팅과학회 Journal of Global Fashion Marketing Journal of Global Fashion Marketing Vol.15 No.3
발행연도
2024.6
수록면
320 - 340 (21page)
DOI
10.1080/20932685.2024.2331518

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
Since the early developments of Web3 and the Metaverse, the fashion industry has been actively launching initiatives, especially through gamification, Non-Fungible Tokens (NFTs) and shopping experience. Up until now the academic literature relating to the implications for fashion brands in a digital fashion marketing context has been scarce. Through a systematic content analysis of 235 articles published between 2021 and 2023 in Vogue Business and The Business of Fashion, this research has focused on the main brands and uses of the Metaverse, as well as their real applications. Through a thorough analysis, this research reveals that the most active fashion sub-industries on the Metaverse are those relating to luxury, sportswear and beauty, with Nike, Gucci and Hermès emerging as the leading brands. Furthermore, when it comes to fashion and the Metaverse, the most popular topics relate to NFTs and gamification, to the point that they are used as synonyms of the Metaverse. This practice creates confusion, not only in terms of the meaning of the term “metaverse”, but also regarding its implications for fashion brands. Finally, the study identifies issues that demand further analysis in subsequent academic research regarding the notion of falsity and the Metaverse.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

최근 본 자료

전체보기

댓글(0)

0