메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
정혜선 (계명대학교) 이소영 (계명대학교) 이충권 (계명대학교)
저널정보
한국스마트미디어학회 스마트미디어저널 스마트미디어저널 제13권 제4호
발행연도
2024.4
수록면
57 - 64 (8page)
DOI
https://dx.doi.org/10.30693/SMJ.2024.13.4.57

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
패션 이미지에 포함된 소재, 색상, 핏 등의 속성은 소비자가 의류를 구매하는 데 있어서 중요한 요인이다. 그러나 의류 속성을 분류하는 과정은 많은 인력을 필요로 하고, 작업자의 주관적인 판단에 의존하기 때문에 일관성이 떨어진다. 이러한 문제를 완화하기 위해 인공지능을 활용하여 패션 이미지의 의류 속성을 분류하는 연구가 필요하다. 기존 연구에서는 주로 상의 또는 하의 중 하나의 항목에 대한 의류 속성을 분류하는 것에 초점을 두고 있기 때문에 전신 패션 이미지의 경우에는 상의와 하의의 속성을 동시에 파악할 수 없다는 한계가 있었다. 본 연구는 패션 이미지의 상의와 하의를 구분하여 각 항목의 카테고리와 의류 소재의 속성을 분류할 수 있는 딥러닝 모델을 제안한다. 본 연구에서 딥러닝 모델 ResNet과 EfficientNet를 이용하였고, 학습에 활용한 데이터셋은 패션 이미지 1,002,718장과 의류 카테고리와 소재 속성을 포함한 라벨 총 125개를 사용하였다. Weighted F1-Score를 기준으로 ResNet은 0.800, EfficientNet는 0.781로 ResNet이 더 우수한 성능을 보였다.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

최근 본 자료

전체보기

댓글(0)

0