메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
김진균 (군산대학교) 전해명 (군산대학교) 노재규 (군산대학교)
저널정보
대한임베디드공학회 대한임베디드공학회논문지 대한임베디드공학회논문지 제19권 제3호
발행연도
2024.6
수록면
131 - 139 (9page)
DOI
10.14372/IEMEK.2024.19.3.131

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
Crew Transfer Vessels (CTVs) are primarily used for the maintenance of offshore wind farms. Despite being manually operated by professional captains and crew, collisions with other ships and marine structures still occur. To prevent this, the introduction of autonomous navigation systems to CTVs is necessary. In this study, research on the obstacle avoidance system of the autonomous navigation system for CTVs was conducted. In particular, research on obstacle avoidance simulation for CTVs using deep reinforcement learning was carried out, taking into account the currents and wind loads in offshore wind farms. For this purpose, 3 degrees of freedom ship maneuvering modeling for CTVs considering the currents and wind loads in offshore wind farms was performed, and a simulation environment for offshore wind farms was implemented to train and test the deep reinforcement learning agent. Specifically, this study conducted research on obstacle avoidance maneuvers using MATD3 within deep reinforcement learning, and as a result, it was confirmed that the model, which underwent training over 10,000 episodes, could successfully avoid both static and moving obstacles. This confirms the conclusion that the application of the methods proposed in this study can successfully facilitate obstacle avoidance for autonomous navigation CTVs within offshore wind farms.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

최근 본 자료

전체보기

댓글(0)

0