메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
윤서준 (강원대학교 기계의용메카트로닉스공학과) 장현우 (강원대학교 스마트헬스과학기술융합학과) 최성욱 (강원대학교 기계의용메카트로닉스공학과)
저널정보
대한의용생체공학회 의공학회지 의공학회지 제45권 제3호
발행연도
2024.6
수록면
128 - 137 (10page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
It is necessary to develop a pulsatile Extracorporeal Membrane Oxygenator (p-ECMO) with counter-pulsation control(CPC), which ejects blood during the diastolic phase of the heart rather than the systolic phase, due to the known issues with conventional ECMO causing fatal complications such as ventricular dilation and pulmonary edema. A prom- ising method to simultaneously detect the pulsations of the heart and p-ECMO is to analyze blood pressure waveforms using deep neural network technology(DNN). However, the accurate detection of cardiac rhythms by DNNs is challenging due to various noises such as pulsations from p-ECMO, reflected waves in the vessels, and other dynamic noises. This study aims to evaluate the accuracy of DNNs developed for CPC in p-ECMO, using human-like blood pressure waveforms reproduced in an in-vitro experiment. Especially, an experimental setup that reproduces reflected waves commonly ob- served in actual patients was developed, and the impact of these waves on DNN judgments was assessed using a multiple DNN (m-DNN) that provides accurate determinations along with a separate index for heartbeat recognition ability. In the experimental setup inducing reflected waves, it was observed that the shape of the blood pressure waveform became increasingly complex, which coincided with an increase in harmonic components, as evident from the Fast Fourier Trans- form results of the blood pressure wave. It was observed that the recognition score (RS) of DNNs decreased in blood pressure waveforms with significant harmonic components, separate from the frequency components caused by the heart and p-ECMO. This study demonstrated that each DNN trained on blood pressure waveforms without reflected waves showed low RS when faced with waveforms containing reflected waves. However, the accuracy of the final results from the m-DNN remained high even in the presence of reflected waves.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

최근 본 자료

전체보기

댓글(0)

0