메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
최연희 (경북대학교) 고현정 (경북대학교) 정회인 (연세대학교) 안성복 (이화여자대학교) 안정훈 (이화여자대학교) 신호성 (원광대학교) Atsuo Amano (Osaka University)
저널정보
연세대학교 의과대학 Yonsei Medical Journal Yonsei Medical Journal Vol.65 No.4
발행연도
2024.4
수록면
234 - 240 (7page)
DOI
10.3349/ymj.2023.0380

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
Purpose: Missing teeth is one of the most important indicators of oral health behavior and the result of dental caries, periodontal disease, and injuries. This study examined a trend in the incidence of severe partial edentulism (SPE) using the Korean National Health Insurance Service (KNHIS) data. Materials and Methods: Data of adults aged ≥20 years were obtained from the KNHIS for the 2014–2018 period. SPE was defined in dental information within a population with a treatment history of dental scaling as having 1 to 8 natural teeth. Crude inci dence rates (CIRs) and age-standardized incidence rates (AIRs) with 95% confidence interval were calculated per 100000 per sons. The Cochran Armitage trend (CAT) test and average annual percentage change were used to analyze SPE trends. Results: The CIRs among Korean adults were from 346.29 to 391.11 in 2014–2016 and from 391.11 to 354.09 in 2016–2018. The AIRs trend statistically increased by 4.31% from 346.29 to 376.80 and decreased by 4.72% from 376.80 to 342.10. The AIRs in men increased by 4.00% and decreased by 3.01%. The AIRs in women decreased by 2.18% and increased by 2.11% (CAT; p<0.01). The AIRs by region and income also showed trends of increase and decrease. Conclusion: The study showed that the incidence trend of SPE increased and decreased from 2014 to 2018. This result would be able to aid in the planning of public oral health, and may also serve as fundamental data for verifying the impact of the public oral health policies implemented.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

최근 본 자료

전체보기

댓글(0)

0