메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
김형주 (호서대학교) 문남미 (호서대학교)
저널정보
한국정보처리학회 JIPS(Journal of Information Processing Systems) Journal of Information Processing Systems Vol.20 No.2
발행연도
2024.4
수록면
159 - 172 (14page)
DOI
10.3745/JIPS.02.0211

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
The number of healthcare products available for pets has increased in recent times, which has prompted activeresearch into wearable devices for pets. However, the data collected through such devices are limited by outliersand missing values owing to the anomalous and irregular characteristics of pets. Hence, we propose petbehavior recognition based on a hybrid one-dimensional convolutional neural network (CNN) and long shorttermmemory (LSTM) model using pet wearable devices. An Arduino-based pet wearable device was firstfabricated to collect data for behavior recognition, where gyroscope and accelerometer values were collectedusing the device. Then, data augmentation was performed after replacing any missing values and outliers viapreprocessing. At this time, the behaviors were classified into five types. To prevent bias from specific actionsin the data augmentation, the number of datasets was compared and balanced, and CNN-LSTM-based deeplearning was performed. The five subdivided behaviors and overall performance were then evaluated, and theoverall accuracy of behavior recognition was found to be about 88.76%.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

최근 본 자료

전체보기

댓글(0)

0