메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
Ku Ki Bon (Department of Plant Resources and Environment, Jeju National University) Le Anh Tuan (제주대학교) THAI THANH TUAN (제주대학교 아열대원예산업연구소) Mansoor Sheikh (Department of Plant Resources and Environment, Jeju National University) Kittipadakul Piya (Department of Agronomy, Faculty of Agriculture, Kasetsart University) Duangjit Janejira (Department of Horticulture, Faculty of Agriculture, Kasetsart University) 강호민 (강원대학교) Oh San Su Min (Department of Horticulture, Jeju National University, Jeju) Phan Ngo Hoang (Faculty of Biology—Biotechnology, University of Science, Ho Chi Minh) Chung Yong Suk (Department of Plant Resources and Environment, Jej)
저널정보
한국식물생명공학회 Plant Biotechnology Reports Plant Biotechnology Reports Vol.18 No.3
발행연도
2024.6
수록면
361 - 373 (13page)
DOI
10.1007/s11816-024-00902-8

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
Stomata are specialized pores that play a vital role in gas exchange and photosynthesis. Microscopic images are often used to assess stomatal characteristics in plants; however, this can be a challenging task. By utilizing Matterport’s Mask R-CNN implementation as the foundational model, fine-tuning was conducted on a dataset of 810 microscopic images of Hedyotis corymbosa leaves’ surfaces for automated stomatal pores detection. The outcomes were promising, with the model achieving a convergence of 98% mean average precision (mAP) for both detection and segmentation. The training loss and validation loss values converged around 0.18 and 0.37, respectively. Regression analyses demonstrated the statistical significance (p values ≤ 0.05) of predictor parameters. Notably, the tightest cluster of data points was observed in stomata pore area meas- urements, followed by width and length. This highlights the precision of the stomatal pore area in characterizing stomatal traits. Despite challenges posed by the original dataset’s low-resolution images and artifacts like dust, bubbles, and blurriness, our innovative utilization of the Mask R-CNN algorithm yielded commendable outcomes. This research introduces a robust approach for stomatal phenotyping with broad applications in plant biology and environmental studies.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

최근 본 자료

전체보기

댓글(0)

0