메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
정우식 (세종대학교)
저널정보
한국원자력학회 Nuclear Engineering and Technology Nuclear Engineering and Technology Vol.56 No.6
발행연도
2024.6
수록면
2,092 - 2,098 (7page)
DOI
10.1016/j.net.2024.01.017

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
Probabilistic safety assessment (PSA) plays a critical role in ensuring the safe operation of nuclear power plants. In PSA, event trees are developed to identify accident sequences that could lead to core damage. These event trees are then transformed into a core-damage fault tree, wherein the accident sequences are represented by usual and complemented logic gates representing failed and successful operations of safety systems, respectively. The core damage frequency (CDF) is estimated by calculating the minimal cut sets (MCSs) of the core-damage fault tree. Delete-term approximation (DTA) is commonly employed to approximately solve MCSs representing accident sequence logics from noncoherent core-damage fault trees. However, DTA can lead to an overestimation of CDF, particularly when fault trees contain many nonrare events. To address this issue, the present study introduces a new zero-suppressed ternary decision diagram (ZTDD) algorithm that averts the CDF overestimation caused by DTA. This ZTDD algorithm can optionally calculate MCSs with DTA or prime implicants (PIs) without any approximation from the core-damage fault tree. By calculating PIs, accurate CDF can be calculated. The present study provides a comprehensive explanation of the ZTDD structure, formula of the ZTDD algorithm, ZTDD minimization, probability calculation from ZTDD, strength of the ZTDD algorithm, and ZTDD application results. Results reveal that the ZTDD algorithm is a powerful tool that can quickly and accurately calculate CDF and drastically improve the safety of nuclear power plants.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

최근 본 자료

전체보기

댓글(0)

0