메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
이진효 (서울특별시 기후환경본부) 사창훈 (서울특별시 기후환경본부) 윤태호 (서울특별시 보건환경연구원) 최용석 (서울특별시 보건환경연구원) 이현정 (제주대학교) 구자용 (서울시립대학교)
저널정보
한국대기환경학회 한국대기환경학회지(국문) 한국대기환경학회지 제40권 제5호
발행연도
2024.10
수록면
558 - 571 (14page)
DOI
10.5572/KOSAE.2024.40.5.558

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
A machine learning-based classification model was applied to identify the main influencing factors affecting O₃advisory (triggered when hourly average O₃ concentrations exceed 0.12 ppm), using existing 25 urban air quality monitoring networks data from Seoul and meteorological data from Seoul automatic weather station (Jongno-gu). From May to September 2023, data were collected and analyzed. The dataset comprised 19 variables, including urban air quality metrics (such as O₃, PM<SUB>2.5</SUB>, PM<SUB>10</SUB>, NO<SUB>x</SUB>) and meteorological parameters (such as wind speed, temperature, relative humidity, rain probability, and cloud cover), recorded on an hourly basis. Using this data, two classification models were developed: the first model (analysis model, ANM) employed decision tree and random forest algorithms to identify the main influencing factors affecting high O₃ concentration events. The second model (prediction model, PRM) was designed to predict the likelihood of O₃ advisory for the following day. Through the application of ANM, the main influencing factors affecting high O₃ concentration were identified, with PM<SUB>2.5</SUB>, PM<SUB>10</SUB>, and temperature emerging as significant variables affecting O₃ advisory. And both decision tree and random forest models have demonstrated strong classification performance. These results indicate that the models effectively classified the data into category 0 (no O₃ advisory) and category 1 (O₃ advisory). Additionally, a second classification model (PRM) was developed to predict the likelihood of O₃ advisory in Seoul for the following day. This model utilized seven independent variables: temperature, relative humidity, rain probability, cloud cover, and forecasted air quality levels (PM<SUB>2.5</SUB>, PM<SUB>10</SUB>, O₃). Overall, these findings suggest that PRM is a viable tool for predicting next-day O₃ advisory. In this study, the application of the proposed classification model methodology based on real-time air quality and meteorological data for a given region is expected to quantitatively explain the performance of PRM and be usefully utilized in reducing O₃ exposure for sensitive and vulnerable populations.

목차

Abstract
1. 서론
2. 연구 방법
3. 결과 및 고찰
4. 결론
References

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-151-25-02-090975446