메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
Hyeji Kim Yeongmin Lee Chun-Gi Lyuh
저널정보
한국전자통신연구원 [ETRI] ETRI Journal ETRI Journal 제46권 제5호
발행연도
2024.10
수록면
817 - 828 (12page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
Owing to the widespread advancement of transformer-based artificial neural networks, artificial intelligence (AI) processors are now required to perform matrix-vector multiplication in addition to the conventional matrix-matrix multiplication. However, current AI processor architectures are optimized for general matrix-matrix multiplications (GEMMs), which causes significant throughput degradation when processing general matrix-vector multiplications (GEMVs). In this study, we proposed a port-folding GEMV (PF-GEMV) scheme employing multiformat and low-precision techniques while reusing an outer product-based processor optimized for conventional GEMM operations. This approach achieves 93.7% utilization in GEMV operations with an 8-bit format on an 8 X 8 processor, thus resulting in a 7.5 X increase in throughput compared with that of the original scheme. Furthermore, when applied to the matrix operation of the GPT-2 large model, an increase in speed by 7 X is achieved in single-batch inferences.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

최근 본 자료

전체보기

댓글(0)

0