메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
Hongyou Wan (Zhengzhou University) Luqi Yang (Zhengzhou University) Chen Wang (Zhengzhou University) Xinru Li (Zhengzhou University) Wei Zhang (Zhengzhou University) Lin Gong (Zhengzhou University)
저널정보
대한환경공학회 Environmental Engineering Research Environmental Engineering Research 제30권 제1호
발행연도
2025.2
수록면
171 - 187 (17page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
The advanced oxidation process based on hydrogen peroxide (H₂O₂) can effectively degrade tetracycline hydrochloride (TC). The key to activating H₂O₂ for the degradation of organic pollutants lies in the exploration of efficient and cost-effective catalysts. Natural coal gangue (CG), a byproduct of coal mining, holds potential for use in catalytic oxidation of pollutants. Zeolitic imidazolate framework-67 (ZIF-67) is commonly employed to activate sulfate systems, serving as a highly efficient Co-based heterogeneous catalyst that promotes the generation of strong oxidation species. However, there has been no relevant research on using CG to load ZIF-67 for the activation of H₂O₂ in pollutant degradation. In this study, ZIF-67/CG catalysts were prepared, with ZIF-67 and CG serving as precursors for the highly efficient activation of H₂O₂. X-ray photoelectron spectroscopy (XPS) and Fourier-transform infrared spectroscopy (FTIR) confirmed that ZIF-67/CG possesses a favorable ability to activate H₂O₂. The results revealed that the degradation efficiency of TC in the ZIF-67/CG/H₂O₂ system reached 82.8% within 60 minutes. Radical quenching experiments, electron paramagnetic resonance (EPR) analysis, and an analysis of the degradation mechanism identified that ・OH and ¹O₂ played major roles in TC degradation.

목차

ABSTRACT
1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
References

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-151-25-02-090913768