메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
Xiaoyi Jiang (Southeast University) Xintong Gao (Southeast University) Ke Yang (Southeast University) Jijing Hu (Southeast University) Xian Cao (Southeast University) Takashi Sakamaki (Tohoku University) Xianning Li (Southeast University)
저널정보
대한환경공학회 Environmental Engineering Research Environmental Engineering Research 제30권 제1호
발행연도
2025.2
수록면
132 - 146 (15page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Iron minerals can significantly impact the performance of soil microbial fuel cells (Soil-MFCs) through extracellular electron transfer (EET). Introducing defects into iron minerals has been shown to reinforce the microbial dissolution process. In this study, oxygen-rich vacancy defects were successfully incorporated into hematite (DHem), resulting in enhanced Soil-MFCs performance. Voltage measurement and Polarization curves demonstrated that the addition of DHem yielded the highest electricity output of 408.96 mV and the highest power density of 324.97 mW/m². Liquid chromatography revealed that the system with DHem exhibited the most effective phenanthrene degradation at 61.42%, with a 40.70% increase in degradation near cathode areas. The introduction of defects led to increased dissolution of Fe(II) in hematite. The dissolved Fe(II) showed a significant positive correlation with both electricity generation and phenanthrene degradation, confirming that the introduction of defects strengthened the long-distance electron transfer capability by enhancing the dissolution of hematite. In addition, after adding iron minerals, the abundance of Petrimonas, Pseudomonas, Trichococcus, and Azoarcus was increased, which were all important function microorganisms in the system. We concluded that the introduction of defects in hematite can enhance the overall performance of Soil-MFCs by enhance electron transfer and microbial community structure.

목차

ABSTRACT
1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
References

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-151-25-02-090913786