메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
Jaeseok Heo (Ajou University) Pilho Kim (National Institute of Environmental Research) Jongsung Park (National Institute of Environmental Research) Jae Young Lee (Ajou University)
저널정보
대한환경공학회 Environmental Engineering Research Environmental Engineering Research 제30권 제1호
발행연도
2025.02
수록면
35 - 52 (18page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Previous studies have estimated the sources of particulate matter in the atmosphere. Among these, studying the sources of secondary aerosols harmful to human health is important. However, there is a lack of research on ammonia (NH₃), a precursor to secondary aerosol formation. This study uses positive matrix factorization (PMF) model and conditional bivariate probability function (CBPF) model to estimate the sources of particulate matter and ammonia. The results showed that about 40% of the PM<SUB>2.5</SUB> mass at both sites was attributable to secondary aerosol. To estimate the emission sources of ammonia that contribute to the generation of secondary aerosols, CBPF was utilized to model and compare the emission characteristics of categorized pollution sources and ammonia, and it was found that SMA had similar emission trends to industry, road dust, oil combustion, and biomass combustion, while GRA had similar emission trends to oil combustion and vehicle (diesel). Considering the results from these two regions, ammonia in the metropolitan area is more likely to be emitted from daily activities than from long distances. The study results demonstrate the major role of secondary aerosols on ambient PM<SUB>2.5</SUB> concentrations and can help develop effective management strategies and policies for air pollution mitigation.

목차

ABSTRACT
1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
References

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-151-25-02-090913848