메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
Myungjin Kim (Hanyang University) Misun Joo (Hanyang University) Kyungsik Han (Hanyang University)
저널정보
한국HCI학회 한국HCI학회 논문지 한국HCI학회 논문지 2024 Vol.19 No.3
발행연도
2024.9
수록면
15 - 23 (9page)
DOI
10.17210/jhsk.2024.09.19.3.15

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
By harnessing the objectivity of AI, designers have gained support in the decision-making process. However, in fashion, where style is heavily influenced by designers’ subjective experience, expertise, and heuristics, designers have expressed dissatisfaction with the inability of AI to reflect this subjectivity. Our research aims to explore methods for incorporating the nuances of fashion style into AI, and to develop a tool that more effectively supports the design decision-making process. Based on a formative study with six fashion professionals, we identified the process of defining style and how it is applied in the design process, and formulated three design goals. We developed CoCoStyle, consisting of CoStyle, which incorporates style subjectivity into the AI by adapting fashion attributes and images; CoDesign, which generates new, synthetic images based on the user-defined style; and CoImprove, which recommends various ways to improve designs within the user-defined style. We conducted a user study with six fashion professionals and four students majoring in fashion design, confirming the effectiveness of CoCoStyle in capturing style subjectivity, its potential to reduce time in the design process, and its role in mitigating concerns about design uniformity caused by AI. We highlighted the importance of attribute- and image-based adjustments in incorporating style subjectivity into AI and suggested ways for AI to gain a deeper understanding of style nuances.

목차

Abstract
1. Introduction
2. Related Work
3. System Design
4. CoCoStyle
5. User Study and Results
6. Discussion
7. Conclusions
References

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

최근 본 자료

전체보기

댓글(0)

0