메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
Amirthalakshmi Thirumalai Maadapoosi (SRM Institute of Science and Technology) Velan Balamurugan (Sathyabama Institute of Science and Technology) V. Vedanarayanan (Sathyabama Institute of Science and Technology) Sahaya Anselin Nisha (Sathyabama Institute of Science and Technology) R. Narmadha (Sathyabama Institute of Science and Technology)
저널정보
한국지능시스템학회 INTERNATIONAL JOURNAL of FUZZY LOGIC and INTELLIGENT SYSTEMS INTERNATIONAL JOURNAL of FUZZY LOGIC and INTELLIGENT SYSTEMS Vol.24 No.3
발행연도
2024.9
수록면
231 - 241 (11page)
DOI
10.5391/IJFIS.2024.24.3.231

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Heart disease is currently one of the leading causes of death worldwide. Predicting cardiac diseases is a significant challenge in clinical data analysis. Machine learning is useful for generating judgments and predictions based on the significant amount of data generated by healthcare businesses. Using patient heart disease data, this research presents a heart disease prediction module using the grey wolf optimization (GWO)-tuned artificial neural network (ANN) classifier. The effectiveness of the proposed module relies on the optimal tuning of the weights of the ANN classifier using the GWO algorithm, which involves the hierarchy-based prey-hunting features of grey wolves. This enhances the prediction accuracy of the proposed model. The efficiency of the proposed model was analyzed in terms of performance indices such as accuracy, sensitivity, specificity, and F1-score, which were determined to be 92.9245%, 94.7469%, 90.9215%, and 96.0551%, respectively. The experimental results obtained using the proposed GWO-ANN module validated the efficiency of the proposed strategy compared with conventional models.

목차

Abstract
1. Introduction
2. Literature Survey
3. Proposed Heart Disease Prediction Method using GWO-tuned ANN Classifier
4. GWO Algorithm in ANN Classifier
5. Results and Discussion
6. Concludsion
References

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-151-24-02-090649142