메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
박지민 (연세대학교) 서완혁 서동희 (GS건설) 윤태섭 (연세대학교)
저널정보
한국지반공학회 한국지반공학회논문집 한국지반공학회논문집 제40권 제4호
발행연도
2024.8
수록면
69 - 79 (11page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
현장 지반정수 데이터는 다양한 현장 및 실내시험을 통해 획득된 후 지반조사보고서의 형태로 작성되어 유통된다. 효율적인 설계 및 시공을 위해선 지반정수의 디지털 데이터베이스화가 필수적이나, 현재 지반조사보고서 데이터는 수동 입력 방식으로 많은 시간과 인력이 소요되며, 오류가 발생하기도 한다. 본 연구는 이미지 기반 딥러닝 모델 및 텍스트 마이닝 기법을 사용하여 지반조사보고서에서 데이터를 자동으로 추출하는 방법을 제안하였다. 딥러닝 기반의 페이지 분류 모델과 텍스트 서칭 알고리즘을 사용하여 지반조사보고서 부록 내 세부 지반시험 결과 보고서를 100%의 정확도로 분류할 수 있었다. 컴퓨터 비전 알고리즘을 통해 보고서 페이지 내 유효한 데이터 영역을 결정하고, 텍스트 분석을 통해 추출 데이터 항목과 상응하는 지반 데이터를 짝지어 데이터를 추출했다. 제안한 모델은 205개의 지반조사 보고서로 구성된 데이터셋을 통해 검증되었으며, 평균 93.0%의 데이터 추출 정확도를 기록하였다. 마지막으로, 추출 모델의 실무 적용성을 위해 사용자 인터페이스 기반 프로그램을 개발하였다. 프로그램 내 사용자 상호작용을 통해 지반조사보고서 PDF 파일을 업로드하고 자동으로 보고서를 분석 및 데이터를 추출, 편집할 수 있도록 했다. 이를 통해 지반조사보고서의 디지털화 및 지반 데이터베이스 구축이 더욱 효율적이고 정확하게 이루어질 수 있을 것으로 판단된다.

목차

Abstract
요지
1. 서론
2. 지반조사보고서 데이터 추출 자동화
3. 결과 및 분석
4. 사용자 인터페이스 기반 추출 프로그램
5. 결론
참고문헌 (References)

참고문헌 (31)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-151-24-02-090656405