메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
윤은주 (국토연구원) 이지우 (국토연구원)
저널정보
한국기후변화학회 한국기후변화학회지 Journal of Climate Change Research Vol.15 No.4
발행연도
2024.8
수록면
551 - 563 (13page)
DOI
10.15531/KSCCR.2024.15.4.551

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Urban climate resilience, which involves transforming cities to adapt to climate change, has gained significant attention in recent years. Although previous research has explored urban climate resilience, the inherent complexity and constant evolution of urban environments present challenges for quantitative approaches. This study focuses specifically on "heavy rain" - the most damaging climate event - and "green infrastructure," a crucial component of urban climate resilience. It introduces a conceptual framework and a quantitative evaluation methodology based on supply and demand metrics. The study posits that urban climate resilience can be enhanced as the supply of green infrastructure increases relative to demand. Demand is evaluated through factors such as precipitation, topography, land cover, and population characteristics, enabling simulations of changes due to future climate and socioeconomic shifts. Supply, on the other hand, is evaluated based on the type and area of green infrastructure, allowing the methodology to account for efforts to expand or enhance green infrastructure. The pilot application of this methodology to Suwon City, Gyeonggi-do, revealed that 43.8% of the entire area had insufficient supply compared to demand (indicating low climate resilience), and this was particularly pronounced around the Gosaek and Mangpo stations in the southern region. The study demonstrated that the calculated climate resilience values accurately reflected the actual urban space and the historical or potential damage from heavy rain.

목차

ABSTRACT
1. 서론
2. 연구방법
3. 결과 및 고찰
4. 결론
References

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-151-24-02-090674574