메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
Lee, Ju Hee (Samsung Medical Center) Yu, Jae Yong (Yonsei University College of Medicine) Shim, So Yun (Samsung Medical Center) Yeom, Kyung Mi (Samsung Medical Center) Ha, Hyun A (Samsung Medical Center) Jekal, Se Yong (Samsung Medical Center) Moon, Ki Tae (Samsung Medical Center) Park, Joo Hee (Samsung Medical Center) Park, Sook Hyun (Samsung Medical Center) Hong, Jeong Hee (Samsung Medical Center) Song, Mi Ra (Gangseo University) Cha, Won Chul (Samsung Medical Center)
저널정보
한국성인간호학회 성인간호학회지 성인간호학회지 제36권 제3호
발행연도
2024.8
수록면
191 - 202 (12page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Purpose: The purposes of this study were to develop a prediction model for pressure injury using a machine learning algorithm and to integrate it into clinical practice. Methods: This was a retrospective study of tertiary hospitals in Seoul, Korea. It analyzed patients in 12 departments where many pressure injuries occurred, including 8 general wards and 4 intensive care units from January 2018 to May 2022. In total, 182 variables were included in the model development. A pressure injury prediction model was developed using the gradient boosting algorithm, logistic regression, and decision tree methods, and it was compared to the Braden scale. Results: Among the 1,389,660 general ward cases, there were 451 cases of pressure injuries, and among 139,897 intensive care unit cases, there were 297 cases of pressure injuries. Among the tested prediction models, the gradient boosting algorithm showed the highest predictive performance. The area under the receiver operating characteristic curve of the gradient boosting algorithm"s pressure injury prediction model in the general ward and intensive care unit was 0.86 (95% confidence interval, 0.83~0.89) and 0.83 (95% confidence interval, 0.79~0.87), respectively. This model was integrated into the electronic health record system to show each patient"s probability for pressure injury occurrence, and the risk factors calculated every hour. Conclusion: The prediction model developed using the gradient boosting algorithm exhibited higher performance than the Braden scale. A clinical decision support system that automatically assesses pressure injury risk allows nurses to focus on patients at high risk for pressure injuries without increasing their workload.

목차

INTRODUCTION
METHODS
RESULTS
DISCUSSION
CONCLUSION
REFERENCES

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-151-24-02-090653646