메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
한용희 (숭실대학교) 고방원 (숭실대학교)
저널정보
한국정보전자통신기술학회 한국정보전자통신기술학회 논문지 한국정보전자통신기술학회 논문지 제17권 제4호
발행연도
2024.8
수록면
183 - 189 (7page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
본 연구는 시계열 데이터를 효과적으로 예측하기 위해 데이터를 Seasonal-Trend Decomposition on Loess을 통해 추세, 계절성, 잔차 성분으로 분해한 후 추세 성분에는 ARIMA, 계절성 성분에는 Fourier Series Regression, 잔차 성분에는 XGBoost를 적용하는 하이브리드 예측 모델을 제안하였다. 또한, ARIMA, XGBoost, LSTM, EMD-ARIMA, CEEMDAN-LSTM 모델을 포함한 성능 비교 실험을 수행하여 각 모델의 예측 성능을 평가하였다. 실험 결과, 제안된 하이브리드 모델은 MAPE, MAAPE, RMSE 지표에서 각각 3.8%, 3.5%, 0.35로 가장 좋은 평가 지표 값을 보이며 기존의 단일 모델보다 우수한 성능을 보였다.

목차

요약
Abstract
1. 서론
2. 선행 연구
3. 최적 예측 시스템 제안 및 실험 결과
4. 결론
REFERENCES

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-151-24-02-090675482