메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
Seo Yi Chng (National University of Singapore) Paul Jie Wen Tern (National Heart Centre Singapore) Matthew Rui Xian Kan (NUS High School of Math and Science) Lionel Tim-Ee Cheng (Singapore General Hospital)
저널정보
대한의료정보학회 Healthcare Informatics Research Healthcare Informatics Research Vol.30 No.1
발행연도
2024.1
수록면
42 - 48 (7page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
Objectives: Telemedicine is firmly established in the healthcare landscape of many countries. Acute respiratory infections arethe most common reason for telemedicine consultations. A throat examination is important for diagnosing bacterial pharyngitis,but this is challenging for doctors during a telemedicine consultation. A solution could be for patients to upload imagesof their throat to a web application. This study aimed to develop a deep learning model for the automated diagnosis ofexudative pharyngitis. Thereafter, the model will be deployed online. Methods: We used 343 throat images (139 with exudativepharyngitis and 204 without pharyngitis) in the study. ImageDataGenerator was used to augment the training data. Theconvolutional neural network models of MobileNetV3, ResNet50, and EfficientNetB0 were implemented to train the dataset,with hyperparameter tuning. Results: All three models were trained successfully; with successive epochs, the loss and trainingloss decreased, and accuracy and training accuracy increased. The EfficientNetB0 model achieved the highest accuracy(95.5%), compared to MobileNetV3 (82.1%) and ResNet50 (88.1%). The EfficientNetB0 model also achieved high precision(1.00), recall (0.89) and F1-score (0.94). Conclusions: We trained a deep learning model based on EfficientNetB0 that candiagnose exudative pharyngitis. Our model was able to achieve the highest accuracy, at 95.5%, out of all previous studies thatused machine learning for the diagnosis of exudative pharyngitis. We have deployed the model on a web application that canbe used to augment the doctor’s diagnosis of exudative pharyngitis.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

최근 본 자료

전체보기

댓글(0)

0